Data types
๐ Code Docs website
Get Started
- โก Quickstart
- ๐ Introduction
- โ FAQs
- ๐ป Full stack
- ๐ Integrations
Components
- ๐งฉ Introduction
- ๐๏ธ Data sources
- Overview
- Data types
- ๐ฐ PDF
- ๐ CSV
- ๐ JSON
- ๐ Text
- ๐ Directory/Folder
- ๐ HTML Web page
- ๐ฝ๏ธ Youtube Channel
- ๐บ Youtube Video
- ๐ Code Docs website
- ๐ Mdx file
- ๐ Docx file
- ๐ Notion
- ๐บ๏ธ Sitemap
- ๐งพ XML file
- โ๐ฌ Question and answer pair
- ๐ OpenAPI
- ๐ฌ Gmail
- ๐ Github
- ๐ Postgres
- ๐ฌ MySQL
- ๐ค Slack
- ๐ฌ Discord
- ๐จ๏ธ Discourse
- ๐ Substack
- ๐ Beehiiv
- ๐ Directory/Folder
- ๐พ Dropbox
- ๐ผ๏ธ Image
- ๐ค Audio
- โ๏ธ Custom
- Data type handling
- ๐๏ธ Vector databases
- ๐ค Large language models (LLMs)
- ๐งฉ Embedding models
- ๐ฌ Evaluation
Community
Product
Data types
๐ Code Docs website
To add any code documentation website as a loader, use the data_type as docs_site
. Eg:
from embedchain import App
app = App()
app.add("https://docs.embedchain.ai/", data_type="docs_site")
app.query("What is Embedchain?")
# Answer: Embedchain is a platform that utilizes various components, including paid/proprietary ones, to provide what is believed to be the best configuration available. It uses LLM (Language Model) providers such as OpenAI, Anthpropic, Vertex_AI, GPT4ALL, Azure_OpenAI, LLAMA2, JINA, Ollama, Together and COHERE. Embedchain allows users to import and utilize these LLM providers for their applications.'
Was this page helpful?